Accident Type Classification Based On Random Forest Model

Student

Samarth Gour
Data Science Enthusiast

Problem :

Given an accident dataset of m training examples, each of which contains information in the form of various features such as weather, speed limit and a label column as Accident. The label corresponds to a three classes namely 1-Fatal, 2-Serious, 3-Slight to which the training example belongs to. In multiclass classification, we have a finite set of classes. Each training example also has n features. We’ll dig into the data later on.

Aim of this article :

The aim of this article is to predict the severity of accident as in three classes as severe , fatal and slight with the help of a Random Forest Classification Algorithm .We will then calculate the accuracy of our ML model on the testing dataset.

Approach :

We’ll go through the following phases

Load dataset from source. Split the dataset into “training” and “test” data. Train Random Forest Classifier on training data. Use the above classifiers to predict labels for the test data. Measure accuracy and visualise classification.

Make sure that you are familiar with the following python libraries such as numpy, pandas, scikit-learn and matplotlib.<

Code with explanation

Importing necessary libraries


We shall check out the

The above command returns
Output: (1461068, 33)

We shall remove the irrelevant columns from out dataframe for the random forest model to produce effective results


Checking attributes which contains null values


The above code produces following result


The columns containing null values are represented by “True” whereas the columns not containing null values are represented with “False”

As per our data guide the -1 will be considered as null value. Therefore we’ll check out the number of rows containing all such values.


Output: Number of Rows in dataframe which contain -1 in any column : 599623

Now we will replace the -1 values with Null values, to be further replaced by the mode of the data of that column


Replacing the null values that were created by mode. This is a fair technique for dealing with missing data


Till this stage our pre-processing or data cleaning is completed. Now we’ll look into implementing Random Forest Classification Algorithm with the help of sciket-learn library


Since our target variable is Accident Severity we will create a separate dataframe containing Accident Severity. We can check the size of our target and feature dataframe with .shape function.

Output:

In this step we split our dataset into training set and testing set. We are taking test size as 0.2 which means our 80 % data will be used as training set and the rest 20% will be used as testing set to test our model.


Output :


Now will be feeding our training data to the classifier and estimators specifies the number of Random Forest Trees to be created in model. Higher numbers of trees not necessarily means higher accuracy score.


Output:


Running the created model on our test data


Checking the accuracy of our Random Forest Model

Output:


Hence we have achieved an accuracy of 83 % in our prediction.

Don't miss the text

The Best Content Straight to your Inbox